What is SDRAM – Price, Work Process, Uses, Benefits & Drawbacks

eComputerTips is reader-supported. When you buy through links on our site, we may earn affiliate commission without any additional cost to you.

What is SDRAM? Computer RAM is a very essential part of every setup, no matter what level of work you do on it. While speaking plainly, we refer to computer memory only as “RAM” but it is not that simple since there are various types of RAM available.

SDRAM is the one you are using in your PC today, right now, and would be doing so for many years to come, so it is not something you are unfamiliar with. We won’t be wasting much time on exposition, therefore let’s get into the topic directly. 

What is SDRAM?

What is SDRAM

SDRAM or Synchronous Dynamic Random Access Memory is a type of volatile computer memory in which the DRAM cells work in rhythm with the internal frequency of the CPU.

The advantage you get here is that the memory controller knows the exact time and the number of cycles after which data will be available on the bus.

So, the CPU doesn’t need to wait to access memory, thereby reducing data read and write speeds. This is a single data rate RAM since data is transferred only once in each clock cycle.

They began to be known as SDR SDRAM, and then DDR technology was brought in which data could be transferred on both rising and falling sides of the clock frequency.

In SDRAM, the operating speed is between 100 and 133 MHz. So, the number 100 on your RAM module means that the input/clock frequency is 100 MHz, and the number of data transfers is 100 Mega Transfers per second (MT/s).

Some calculations and you get a maximum bandwidth of 800 MB/s on an SDRAM operating at 100 MHz when the I/O bus has a width of 64 bit.


Uses of SDRAM

The SDR SDRAM was commercially launched in 1998 and has been used in computers made for offices and households widely.

Read Also:  What is DDR3 RAM - Uses, Lifespan, Pros & Cons

Not only that, it was employed even in high-end workstations and servers and was the only viable option until the DDR RAM was introduced.

The two technologies were used together, hence, DDR SDRAMs began rolling out.

Lifespan of SDRAM

The SDRAM lasts usually more than any other component of your PC.

It doesn’t get damaged on its own unless harmed by other physical factors that can hinder or entirely breakdown the working of the RAM module.

So, a usual lifespan of well more than 10 years can be expected, although whether you would be using the same PC that long is doubtful.

How Does it Work?

There is a path of data travel between the CPU and the RAM, known as the input/output bus. The CPU or the memory controller to be precise has got two frequencies:

  • Input/Output Frequency: Refers to the input and output of data between the memory controller and the RAM.
  • Internal RAM frequency: This is the frequency used by the RAM for internal operations.

The data bus requires a DRAM controller circuit, which defines whether the SDRAM would read or write at a given moment so that it cannot do both at once.

Data in SDRAM is stored in memory banks, which are equal in size but independent of each other. Thus, the RAM works faster than DRAM in this arrangement.

A process known as pipelining is used, in which multiple instructions are taken from the processor in an orderly fashion, and new instructions are accumulated over the older ones, which are being currently executed.

Read Also:  What is ECC in RAM Memory - Works, FAQ, Pros & Cons

Then comes the actual process of reading and writing data, initiated by the ACTIVE command, which recognizes a memory bank and activates a row, and the several columns therein.

A fixed number of waiting cycles is present between activating a bank and reading or writing there, but meanwhile, instructions can be sent to the other banks.

After a row has been activated, the memory cells it has are automatically refreshed. However, the RAM then requires a column address so that data can be accessed, 8-bits at a time by each chip.

After a read command is received, data is accessed and the output produced a few clock cycles later on only the rising edge of the clock signal, depending on what the CAS latency is.

In the case of a write command, data is written while the same clock cycle lasts. Here the controller works to make sure that the RAM is not writing data in the place where it was supposed to read so.

Benefits of Using SDRAM

1. Speed

One of the significant reasons why SDRAM has replaced DRAM over time is because they can operate at much higher speeds, thus read and write functions are also faster.

This is because the clock signals of the RAM and CPU are synchronised and no time is wasted to receive a signal from the memory controller.

2. Access to memory

A feature of the SDRAM is that it can read data from one memory bank, while already reading from another.

This means that it can work with two addresses at the same time, which the DRAM couldn’t do.

3. Efficient

Due to a synchronized nature, the SDRAM is far more efficient than DRAM.

The chip can access new commands while working on the previous ones which further reduces the waiting time.

Thus, the computer can do more reading and writing in a specified time.

4. Ease of Design

It is much easier to design a Synchronized circuit for parallel or simultaneous operations, than a non-synchronized one.

Read Also:  What is Non ECC RAM - Works, FAQ, Pros & Cons

Since a PC never runs only a single process at one time, the SDRAM technology takes the lead.

5. Better Bandwidth

The process of pipelining has been implemented in SDRAMs, which increases the bandwidth than older DRAM, even though it might have higher latency.

6. Prefetch buffer 

The prefetch buffering is a significant improvement in RAMs’ memory access speeds since the computer can access more units of data in a particular row.

This DDR1 SDRAM is of 2bits, double than that of SDRAM. That is 4 times more in DDR4, at 8 bits.

Drawbacks of Using SDRAM

Here, we consider only the SDR type of SDRAM, and so comparison is made with DDR SDRAM.

7. Single Data Channel

In SDR SDRAM, data is transferred on only one side of the clock cycle.

This is a weakness when compared to other forms of memory like DDR in which a double amount of data can be transferred in a single clock cycle.

8. Lower Bus Frequency

The slow bus frequency of the SDR SDRAM is also the cause of why it is slower than the newer types of RAM.

For example, the bus frequency of SDRAM is 200 MHz at most, while in DDR4 it is 3200 MHz.

9. Less Bandwidth

The transfer of data in SDR SDRAM is not only slower but due to the single data rate, the total bandwidth is also low in comparison to DDR RAM.

10. Power Consumption

The initial generations of the SDRAM consumed much power. Although with the successors following them, that problem has been managed.


In the end, all that can be said is while SDR SDRAM was a principal development from the DRAM chips it fails to compete with DDR standards directly.

However, it was a necessary step at that time and therefore has special importance, even though it is not the kind of RAM you would like to opt for today.